RiaSoR: Reliability in a Sea of Risk

 

RiaSoR logo

In today’s uncertain investment environment, the perception of technical risk is dependent on how confident the investors are that ocean energy devices will perform reliably and produce the expected output from their devices. As the industry is approaching a pre-commercial stage, in-sea testing and demonstration at various scales will be a primary focus for the sector over the next three to five years. This places a key role on the ocean energy test houses to put in place a rigorous testing programme whereby the reliability of these emerging technologies can be tested and independently verified before the systems move onto large scale array deployments.

The Reliability in a Sea of Risk (RiaSoR) project addresses this strategic need, focusing on the key engineering challenges that underpin the reliability and survivability of emerging wave and tidal energy technology.

RiaSoR will establish industry best practice in reliability testing for wave and tidal devices through improved load measurements and verification, standardising design guidelines for marine energy systems, and increasing safety in marine energy operations.

For further information, visit: www.RiaSoR.eu

Oceanera-net funded

The RiaSoR project is funded by the Ocean Energy European Research Area Network (OCEANERA-NET) First Joint Call 2014, in association with Scottish Enterprise, InnovateUK and Swedish Energy Agency. For further information on OCEANERA-NET, visit: OCEANERA-NET website

Methodology

The Variation Mode and Effect Analysis (VMEA) methodology used in other more mature sectors such as the automotive and aerospace industry will be adapted in the RiaSoR project for the ocean energy sector. VMEA is a method aimed at guiding engineers to find critical areas in terms of the effects of unwanted variation.

VMEA diagram

Project consortium

The project brings together three leading European research and testing sites from the north of Scotland, England and Sweden in order to develop industry approved reliability testing practices. These practices will be applied by the research and testing sites, ensuring consistency and robustness of testing to demonstrate reliability across wave and tidal technologies.

The overall technical approach will be driven by SP Research, who bring their experience in reliability testing from the automotive industry. They will focus on developing framework methodologies that will be deployed at the onshore Offshore Renewable Energy Catapult test site in Blyth (England) and the European Marine Energy Centre’s offshore test sites in Orkney (Scotland).

Next steps: RiaSoR II

The goal of the RiaSoR project is to consistently learn from the physical interactions between the devices and their environments, while embedding this understanding and building robustness into marine energy technology designs. RiaSoR II is currently in development with the aim to implement the VMEA methodologies with a condition monitoring framework whereby more data from onshore and offshore testing of ocean energy devices validates VMEA analysis, and ultimately improves OPEX costs for wave and tidal developers.

Related press releases

EMEC CLIENTS

Alstom

Alstom

hammerfest

hammerfest

Aquamarine

Aquamarine Power

atlantis

Atlantis Resources Corporation

Nautricity

Nautricity

Naval Group

Naval Group

openhydro

Open Hydro

Home_Orbital-Marine-logo

Orbital Marine

pelamis

pleamis

scottish_power

ScottishPower Renewables

seatricity

Seatricity

Sustainable Marine Energy

Sustainable Marine Energy

voith

Voith Hydro

Wello

Wello Oy

Supported by: